The Chromatic Index of a Graph Whose Core has Maximum Degree 2 *†

S. Akbari ${ }^{\text {a,d }}$, M. Ghanbari ${ }^{\text {b,d }}$, M. Kano ${ }^{\text {c }}$, M. J. Nikmehr ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, K.N. Toosi University of Technology, Tehran, Iran
${ }^{\text {c Department of Computer and Information Sciences Ibaraki University Hitachi, Ibaraki, 316-8511, Japan }}$
${ }^{\mathrm{d}}$ School of Mathematics, Institute for Studies in Theoretical Physics and Mathematics, P. O. Box 19395-5746, Tehran, Iran ${ }^{\ddagger}$

Abstract

Let G be a graph. The core of G, denoted by G_{Δ}, is the subgraph of G induced by the vertices of degree $\Delta(G)$, where $\Delta(G)$ denotes the maximum degree of G. A k-edge coloring of G is a function $f: E(G) \rightarrow L$ such that $|L|=k$ and $f\left(e_{1}\right) \neq f\left(e_{2}\right)$ for all two adjacent edges e_{1} and e_{2} of G. The chromatic index of G, denoted by $\chi^{\prime}(G)$, is the minimum number k for which G has a k-edge coloring. A graph G is said to be Class 1 if $\chi^{\prime}(G)=\Delta(G)$ and Class 2 if $\chi^{\prime}(G)=\Delta(G)+1$. In this paper it is shown that every connected graph G of even order and $\Delta\left(G_{\Delta}\right) \leq 2$ is Class 1 if $\left|G_{\Delta}\right| \leq 9$ or G_{Δ} is a cycle of order 10.

1 Introduction

All graphs considered in this paper are finite, undirected, with no loops or multiple edges. Let G be a graph. Then $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. The number of vertices of G is called the order of G and denoted by $|G|$. Also, $\Delta(G)$ and $\delta(G)$ denote the maximum degree and the minimum degree of G, respectively. The core of G, denoted by G_{Δ}, is the subgraph of G induced by all vertices of degree $\Delta(G)$. We denote the cycle of order n by C_{n}. Let H be a subgraph of G. For a vertex

[^0]u of $H, d_{H}(u)$ denotes the degree of u in H, and for every vertex v of $G, N_{H}(v)$ denotes $N_{G}(v) \cap V(H)$, where $N_{G}(v)$ is the neighborhood of v in G.

A matching in a graph G is a set of pairwise non-adjacent edges and a 1-factor is a matching which covers $V(G)$. Let $S \subseteq V(G)$ and H be a component of $G-S$. We call H an odd component if H has odd order. The number of odd components of G is denoted by $\operatorname{odd}(G)$. For a subset $X \subseteq V(G)(Y \subseteq E(G)), G-X(G-Y)$ denotes the graph obtained from G by deleting all vertices (edges) of $X(Y)$, respectively. Moreover, we mean $G-H$, the induced subgraph on $V(G)-V(H)$.

A k-edge coloring of a graph G is a function $f: E(G) \longrightarrow L$ such that $|L|=k$ and $f\left(e_{1}\right) \neq f\left(e_{2}\right)$ for all two adjacent edges e_{1} and e_{2} of G. A graph G is k-edge colorable if G has a k-edge coloring. The chromatic index of G, denoted by $\chi^{\prime}(G)$, is the minimum number k for which G has a k-edge coloring. For a general introduction to the edge coloring, the interested reader is referred to [10].

A celebrated result due to Vizing [21] states that for every graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq$ $\Delta(G)+1$. A graph G is said to be Class 1 if $\chi^{\prime}(G)=\Delta(G)$ and Class 2 if $\chi^{\prime}(G)=\Delta(G)+1$. Moreover, a connected graph G is called critical if it is Class 2 and $G-e$ is Class 1 for every edge $e \in E(G)$. A graph G is called overfull if $|E(G)|>\left\lfloor\frac{|V(G)|}{2}\right\rfloor \Delta(G)$. It is easy to see that, if G is overfull, then G is Class 2. For more information about overfull graphs see [12]. In [19] it was proved that there is no critical connected graph G of even order with $\left|G_{\Delta}\right| \leq 5$.

Let H, Q and R be subgraphs of G. We denote the number of edges of H with one end point in Q and another end point in R by $e_{H}(Q, R)$. For a subset $S \subseteq V(G)$, we denote the induced subgraph of G on S by $\langle S\rangle_{G}$.

Classifying a graph into Class 1 and Class 2 is a difficult problem in general (indeed, NP hard), even when restricted to the class of graphs with maximum degree 3 (see [17]). As a consequence, this problem is usually considered on classes of graphs with particular classes of cores. One possibility is to consider a graph whose core has a simple structure (see [4, 7, 9, 11, 13, 14, 15, 16, 22]). Vizing [22] proved that, if G_{Δ} has no edge, then G is Class 1. Fournier [11] generalized Vizing's result by proving that, if G_{Δ} contains no cycle, then G is Class 1 . Thus a necessary condition for a graph to be Class 2 is to have a core containing cycles. Hilton and Zhao $[14,15]$ considered the problem of classifying graphs whose cores are a disjoint union of cycles. Only a few such graphs are known to be Class 2. These include the overfull graphs and the graph P^{*}, which is obtained from
the Petersen graph by removing one vertex and has order 9. Furthermore, they posed the following conjecture.

Conjecture 1. Let G be a connected graph such that $\Delta\left(G_{\Delta}\right) \leq 2$. Then G is Class 2 if and only if G is overfull, unless $G \neq P^{*}$.

In [3], the following theorem was proved:

Theorem 1. Let G be a connected graph such that $\Delta\left(G_{\Delta}\right) \leq 2, \Delta(G)=3$ and $G \neq P^{*}$. Then G is Class 1.

In [6] the following result was proved.

Theorem 2. Let G be a connected graph with $\left|G_{\Delta}\right|=3$. Then G is Class 2 if and only if for some integer n, G is obtained from $K_{2 n+1}$ by removing $n-1$ independent edges.

An edge cut is a set of edges whose removal produces a subgraph with more components than the original graph. So a k-edge-connected graph has no edge cut of size $k-1$.

Two following results provide some conditions under which a graph G with $\left|G_{\Delta}\right|=4$ is Class 1.

Theorem 3.[5] Let G be a 2-edge-connected graph of even order with $\left|G_{\Delta}\right|=4$. Then G is Class 1.

Theorem 4.[5] Let $3 \leq r \leq 4$ be an integer and G be an $(r-2)$-edge-connected graph of order $2 n+1$ with $\left|G_{\Delta}\right| \leq r$. Then G is Class 2 if and only if $|E(G)| \geq n \Delta(G)+1$.

Theorem 5.[20] Let G be a critical connected graph with $\Delta(G) \geq 3$. Further suppose that G has $2 n+1 \geq 7$ vertices and $\left|G_{\Delta}\right|=5$. Then $|E(G)|=n \Delta(G)+1$.

The following useful result, which follows from Vizing's Adjacency Lemma [8], is given in Schrijver's homepage [18, p.1765].

Theorem 6. Suppose k is a natural number. Let v be a vertex of a graph G such that v and all its neighbors have degree at most k, while at most one neighbor has degree precisely k. Then G is k-edge colorable if $G-\{v\}$ is k-edge colorable.

The previous theorem implies the following well-known result which is due to Fournier.

Theorem 7.[11] If G_{Δ} is a forest, then G is Class 1.

Theorem 8.[15] Let G be a connected graph of Class 2 and $\Delta\left(G_{\Delta}\right) \leq 2$. Then the following statements hold.
(i) G is critical;
(ii) $\delta\left(G_{\Delta}\right)=2$;
(iii) $\delta(G)=\Delta(G)-1$, unless G is an odd cycle.

Theorem 9.[15] Let G be a critical connected graph. Then every vertex of G is adjacent to at least two vertices of G_{Δ}.

Theorem 10.[1] Let G be a connected graph with $\Delta\left(G_{\Delta}\right) \leq 2$. Suppose that G has an edge cut of size at most $\Delta(G)-2$ which is a matching or a star. Then G is Class 1.

A connected graph is called unicyclic if it contains precisely one cycle.

Theorem 11.[1] Let G be a connected graph. If every component of G_{Δ} is a unicyclic graph or a tree and G_{Δ} is not a disjoint union of cycles, then G is Class 1.

Theorem 12.[1] Let G be a connected graph of even order. If $\Delta\left(G_{\Delta}\right) \leq 2$ and $\left|G_{\Delta}\right|$ is odd, then G is Class 1.

Now, we are in a position to prove our main theorem.

Theorem 13. Let G be a connected graph of even order and $\Delta\left(G_{\Delta}\right) \leq 2$. If $\left|G_{\Delta}\right| \leq 9$ or $G_{\Delta}=C_{10}$, then G is Class 1.

Proof. For simplicity, let $\Delta=\Delta(G)$. The proof is by induction on $\Delta+|G|$. First note that if $\delta\left(G_{\Delta}\right) \leq 1$ or $\delta(G)<\Delta-1$ or there exists a vertex $x \in V(G)$ such that $\left|N_{G_{\Delta}}(x)\right| \leq 1$, then by Theorems 8 and $9, G$ is Class 1 and we are done. Thus, one can easily assume that G_{Δ} is a disjoint union of cycles, $\delta(G)=\Delta-1$ and

$$
\begin{equation*}
\left|N_{G_{\Delta}}(x)\right| \geq 2 \quad \text { for every } x \in V(G) \tag{1}
\end{equation*}
$$

By (1), we find that $2\left(|G|-\left|G_{\Delta}\right|\right) \leq e_{G}\left(G_{\Delta}, G-G_{\Delta}\right)=(\Delta-2)\left|G_{\Delta}\right|$, and so

$$
\begin{equation*}
|G| \leq \frac{\Delta\left|G_{\Delta}\right|}{2} \leq 5 \Delta . \tag{2}
\end{equation*}
$$

Moreover, if $\left|G_{\Delta}\right|$ is odd, then by Theorem 12, G is Class 1. Thus we can assume that
$\left|G_{\Delta}\right|$ is even, G_{Δ} is a disjoint union of cycles and $\left|G_{\Delta}\right| \leq 8$ or $G_{\Delta}=C_{10}$.
Note that since G_{Δ} is a disjoint union of cycles, $\Delta \geq 2$. If $\Delta=2$, then by the connectivity of G, G is a cycle of even order and so G is Class 1. If $\Delta=3$, then since $|G|$ is even, by Theorem 1 , the assertion is proved. So we may assume that $\Delta \geq 4$. If G has an edge cut of size at most 2 , then by Theorem $10, G$ is Class 1 and we are done. Thus we can suppose that G is 3 -edge connected. First we prove the following claim.

Claim 1. G has a 1-factor.

To the contrary, by Tutte's 1 -factor Theorem [2, p.44] and by the assumption that G is of even order, there exists a non-empty subset $T \subseteq V(G)$ such that $\operatorname{odd}(G-T)>|T|$. Let $m=\operatorname{odd}(G-T)$. Since $|G|$ is even, we have $m \equiv|T|(\bmod 2)$, which implies that $m \geq|T|+2$. First assume $T=\{u\}$. Then there exists a component D of $G-T$ such that $e_{G}(u, D) \leq \Delta-2$ by $m \geq 3$. So by Theorem 10, G is Class 1 and we are done. Thus we may assume $|T| \geq 2$.

Let B_{1}, \ldots, B_{c} (big) and S_{1}, \ldots, S_{d} (small) be the odd components of $G-T$ such that $\left|B_{i}\right| \geq \Delta$ for every $1 \leq i \leq c$ and $\left|S_{j}\right| \leq \Delta-1$ for every $1 \leq j \leq d$, where $m=c+d$. Since $|T| \leq m-2$,

$$
\begin{equation*}
|T| \leq c+d-2 \tag{4}
\end{equation*}
$$

Also, since G is 3 -edge connected,

$$
e_{G}\left(T, B_{i}\right) \geq 3 \quad \text { for every } \quad 1 \leq i \leq c .
$$

For every $1 \leq j \leq d$, since $1 \leq\left|S_{j}\right| \leq \Delta-1=\delta(G)$, the following hold:

$$
\begin{align*}
e_{G}\left(T, S_{j}\right) & =\sum_{x \in V\left(S_{j}\right)} e_{G}(T, x) \\
& \geq\left(\delta(G)-\left(\left|S_{j}\right|-1\right)\right)\left|S_{j}\right| \\
& \geq\left(\Delta-\left|S_{j}\right|\right)\left|S_{j}\right| \tag{5}\\
& \geq \Delta-1 . \tag{6}
\end{align*}
$$

Let $q=\left|T \cap V\left(G_{\Delta}\right)\right|$ and $r=\left|E\left(\langle T\rangle_{G}\right) \cap E\left(G_{\Delta}\right)\right|$. Since G_{Δ} is a 2-regular graph of order at most 10, the number of edges of G_{Δ} joining T to $V(G)-T$ satisfies

$$
2 q-2 r=e_{G_{\Delta}}(T, G-T) \leq 2\left(\left|G_{\Delta}\right|-q\right) \leq 2(10-q) .
$$

Hence

$$
\begin{equation*}
q \leq 5+\frac{r}{2} . \tag{7}
\end{equation*}
$$

Since $\left|N_{G_{\Delta}}(x)\right| \geq 2$ for every $x \in V(G),\left|B_{j}\right| \geq \Delta$ and since G is 3-edge connected, we obtain that

$$
e_{G}\left(T, B_{j}\right) \geq \begin{cases}3 & \text { if }\left|V\left(B_{j}\right) \cap V\left(G_{\Delta}\right)\right| \geq 2, \tag{8}\\ \Delta+1 & \text { if }\left|V\left(B_{j}\right) \cap V\left(G_{\Delta}\right)\right|=1, \\ 2 \Delta & \text { otherwise. }\end{cases}
$$

Let c_{0}, c_{1} and c_{2} be the number of components B_{j} 's such that $\left|V\left(B_{j}\right) \cap V\left(G_{\Delta}\right)\right|=0$, $\left|V\left(B_{j}\right) \cap V\left(G_{\Delta}\right)\right|=1$ and $\left|V\left(B_{j}\right) \cap V\left(G_{\Delta}\right)\right| \geq 2$, respectively. It is easy to see that $c_{2} \leq 3$ by $\left|G_{\Delta}\right| \leq 10$. Moreover, $c=c_{0}+c_{1}+c_{2}$ and

$$
\begin{align*}
e_{G}\left(T, B_{1} \cup \cdots \cup B_{c}\right) & \geq 3 c_{2}+(\Delta+1) c_{1}+2 \Delta c_{0} \\
& =(\Delta-1) c-(\Delta-4) c_{2}+2 c_{1}+(\Delta+1) c_{0} . \tag{9}
\end{align*}
$$

Obviously, using (6) and (9), we have

$$
\begin{align*}
& q \Delta-2 r+(|T|-q)(\Delta-1) \\
\geq & e_{G}\left(T, B_{1} \cup \cdots \cup B_{c} \cup S_{1} \cup \cdots \cup S_{d}\right) \tag{10}\\
\geq & (\Delta-1) c-(\Delta-4) c_{2}+2 c_{1}+(\Delta+1) c_{0}+(\Delta-1) d . \tag{11}
\end{align*}
$$

This implies that

$$
\begin{equation*}
(|T|-c-d)(\Delta-1)+q-2 r+(\Delta-4) c_{2}-2 c_{1}-(\Delta+1) c_{0} \geq 0 . \tag{12}
\end{equation*}
$$

On the other hand, by (4) and (7), we obtain that

$$
\begin{align*}
& (|T|-c-d)(\Delta-1)+q-2 r+(\Delta-4) c_{2}-2 c_{1}-(\Delta+1) c_{0} \\
\leq & -2(\Delta-1)+5-\frac{3 r}{2}+(\Delta-4) c_{2}-2 c_{1}-(\Delta+1) c_{0} . \tag{13}
\end{align*}
$$

Hence, if $c_{2} \leq 2$, then

$$
\begin{equation*}
(|T|-c-d)(\Delta-1)+q-2 r+(\Delta-4) c_{2}-c_{1}-(\Delta+1) c_{0}<0 . \tag{14}
\end{equation*}
$$

This contradicts (12). Thus, one can assume that $c_{2}=3$ by $c_{2} \leq 3$. If $c_{0} \geq 1$, then similarly (14) holds by (13), and we get a contradiction. So, $c_{0}=0$. We show that

$$
\begin{equation*}
c=c_{2}=3 \quad \text { and } \quad V\left(G_{\Delta}\right) \subseteq T \cup\left(\cup_{i=1}^{3} B_{i}\right) . \tag{15}
\end{equation*}
$$

To the contrary, let D be a component of $G-\left(T \cup\left(\cup_{i=1}^{3} B_{i}\right)\right)$ such that $\left|V(D) \cap V\left(G_{\Delta}\right)\right| \geq 1$. Now, since $c_{2}=3$ and $\left|G_{\Delta}\right| \leq 10$, we have $q \leq 3$. Note that if $q \leq 1$, then G_{Δ} is a disjoint union of at least four cycles, a contradiction. If $q=2$, then G_{Δ} consists of at least three cycles and $\left|G_{\Delta}\right| \geq 11$, a contradiction. If $q=3$, then G_{Δ} consists of at least two cycles and $\left|G_{\Delta}\right| \geq 11$, a contradiction. Therefore (15) holds.

By (15) G_{Δ} passes through exactly three components of $G-T$. By (11) and (15),

$$
\begin{equation*}
q-2 r+|T|(\Delta-1) \geq 9+(\Delta-1) d . \tag{16}
\end{equation*}
$$

Now, if $d \geq|T|$, then by $\Delta \geq 4$,

$$
q-2 r \geq 9+(d-|T|)(\Delta-1) \geq 9
$$

which contradicts (7). Thus, we can suppose that $d \leq|T|-1$. Now, by $c=3$ and (4),

$$
\begin{equation*}
d=|T|-1 . \tag{17}
\end{equation*}
$$

By (5), (8), (10) and (15), we obtain that

$$
q-2 r+|T|(\Delta-1) \geq 9+\sum_{j=1}^{d}\left(\Delta-\left|S_{j}\right|\right)\left|S_{j}\right| .
$$

Thus

$$
\begin{equation*}
(|T|-d)(\Delta-1)+q-2 r-9-\sum_{j=1}^{d}\left(\left(\Delta-\left|S_{j}\right|\right)\left|S_{j}\right|-(\Delta-1)\right) \geq 0 . \tag{18}
\end{equation*}
$$

On the other hand, by (7) and (17), we find that

$$
\begin{aligned}
& (|T|-d)(\Delta-1)+q-2 r-9-\sum_{j=1}^{d}\left(\left(\Delta-\left|S_{j}\right|\right)\left|S_{j}\right|-(\Delta-1)\right) \\
\leq & \Delta-10+5-\frac{3}{2} r-\sum_{j=1}^{d}\left(\left(\Delta-\left|S_{j}\right|\right)\left|S_{j}\right|-(\Delta-1)\right) .
\end{aligned}
$$

If $\Delta=4$, then $\left|S_{j}\right|=1$ or 3 and so $\left(\Delta-\left|S_{j}\right|\right)\left|S_{j}\right|-(\Delta-1)=0$ for all j. Thus

$$
\begin{aligned}
& \Delta-10+5-\frac{3}{2} r-\sum_{j=1}^{d}\left(\left(\Delta-\left|S_{j}\right|\right)\left|S_{j}\right|-(\Delta-1)\right) \\
= & 4-10+5-\frac{3}{2} r \\
= & -1-\frac{3}{2} r<0 .
\end{aligned}
$$

This contradicts (18). Hence $\Delta \geq 5$. If $3 \leq\left|S_{k}\right| \leq \Delta-2$ for some k, then $-((\Delta-$ $\left.\left.\left|S_{k}\right|\right)\left|S_{k}\right|-(\Delta-1)\right) \leq-\Delta+3$. So,

$$
\begin{aligned}
& \Delta-10+5-\frac{3}{2} r-\sum_{j=1}^{d}\left(\left(\Delta-\left|S_{j}\right|\right)\left|S_{j}\right|-(\Delta-1)\right) \\
\leq & \Delta-10+5-\frac{3}{2} r-\Delta+3 \\
= & -2-\frac{3}{2} r<0 .
\end{aligned}
$$

This contradicts (18). Therefore, since $\left|S_{j}\right|$ is odd, we conclude that

$$
\begin{equation*}
\Delta \geq 5, \quad \text { and } \quad\left|S_{j}\right|=1 \text { or } \Delta-1 \quad \text { for every } 1 \leq j \leq d \tag{19}
\end{equation*}
$$

By (6), (15), (17) and by the fact that every vertex u of T is adjacent to at least two vertices of G_{Δ}, we find that

$$
\begin{equation*}
|T|(\Delta-2) \geq e_{G}\left(T, \cup_{j=1}^{d} S_{j}\right) \geq d(\Delta-1)=(|T|-1)(\Delta-1) . \tag{20}
\end{equation*}
$$

This concludes that $|T| \leq \Delta-1$.
First assume that $\left|S_{k}\right|=1$ for some $k, 1 \leq k \leq d$. Let $V\left(S_{k}\right)=\{w\}$. Then since $d_{G}(w)=\Delta-1,|T| \geq \Delta-1$. Thus $|T|=\Delta-1$ and $d=\Delta-2$ by (17). It follows from (2) that

$$
4 \Delta-1+\sum_{j=1}^{\Delta-2}\left|S_{j}\right| \leq|T|+\left|B_{1}\right|+\left|B_{2}\right|+\left|B_{3}\right|+\sum_{j=1}^{d}\left|S_{j}\right| \leq|G| \leq 5 \Delta .
$$

Hence $\left|S_{j}\right|=1$ for all $1 \leq j \leq d$ by (19). Let $S_{j}=\left\{x_{j}\right\}, 1 \leq j \leq d$. Then $N_{G}\left(x_{j}\right)=T$ for every j, and so for every vertex $u \in T, e_{G}\left(u, \cup_{j=1}^{d} S_{j}\right)=d=\Delta-2$, which implies $d_{G}(u)=\Delta$ as $\left|N_{G_{\Delta}}(u)\right| \geq 2$. So $T \subset V\left(G_{\Delta}\right)$ and $e_{G}\left(u, \cup_{i=1}^{3} B_{i}\right) \leq 2$ for every $u \in T$. Now, since $c_{2}=3, q \leq 4$ and $e_{G}\left(T, B_{i}\right) \geq 3$, we obtain

$$
3 \times 3 \leq e_{G}\left(T, B_{1} \cup B_{2} \cup B_{3}\right) \leq|T| \times 2=q \times 2 \leq 8 .
$$

This is a contradiction.
Next, suppose that $\left|S_{j}\right|=\Delta-1$ for every $1 \leq j \leq d$. Then it follows from (1) and (15) that $e_{G}\left(T, S_{j}\right) \geq 2\left|S_{j}\right|=2 \Delta-2$ for every $1 \leq j \leq d$ and $e_{G}\left(u, \cup_{j=1}^{d} S_{j}\right) \leq \Delta-2$ for every $u \in T$. Then similar to (20), we have

$$
|T|(\Delta-2) \geq e_{G}\left(T, \cup_{j=1}^{d} S_{j}\right) \geq(|T|-1)(2 \Delta-2),
$$

and so $|T|=1$. This is a contradiction with $|T| \geq 2$. Consequently the proof of the claim is complete.

Now, let M be a 1-factor of G, and $H=G-M$. Then $\Delta(H)=\Delta-1, \delta(H)=\delta(G)-1$, $V\left(H_{\Delta}\right)=V\left(G_{\Delta}\right), H_{\Delta} \subseteq G_{\Delta}, \delta\left(H_{\Delta}\right) \geq \delta\left(G_{\Delta}\right)-1=1$, and by (1),

$$
\begin{equation*}
\left|N_{H}(v) \cap V\left(H_{\Delta}\right)\right| \geq 1 \quad \text { for every } \quad v \in V(H) . \tag{21}
\end{equation*}
$$

It is obvious that if H is Class 1 , then so is G. Thus we can assume that H is Class 2. In particular, H is not connected since otherwise by induction hypothesis, H is Class 1.

Claim 2. G_{Δ} consists of exactly two disjoint cycles.

By (3), G_{Δ} is a disjoint union of cycles. Now, suppose that G_{Δ} is a cycle. If $\delta\left(H_{\Delta}\right)=1$, then by Theorem 7, every component of H is Class 1 , and so is H, a contradiction. Hence we may assume that H_{Δ} is a cycle. By (21), H is connected, a contradiction. Thus G_{Δ} is a disjoint union of at least two cycles. By (3), G_{Δ} is a disjoint union of two cycles. Therefore the claim is proved.

Now, we want to show that H has a component whose core is a cycle. First note that by (21), every component of H contains at least one vertex of H_{Δ}. If the core of each component of H has a vertex of degree 1, then by Theorem 8, each component of H is Class 1 and so H is Class 1, a contradiction. Thus H contains at least one component, say Q, whose core is a disjoint union of cycles. If Q_{Δ} contains exactly two cycles, then by (21) $Q=H$. Thus H is connected, a contradiction. Therefore Q_{Δ} is a cycle.

Let $R=H-Q$. Clearly, since $|G|$ is even, $|Q| \equiv|R|(\bmod 2)$. First assume that Q has even order. Then by induction hypothesis Q is Class 1 . Moreover, if the core of R is not a cycle, then by Theorem 7, R is Class 1 . If the core of R is a cycle, then R is connected, and since $|R|$ is even, by induction hypothesis R is Class 1 , and so is H, a contradiction. Therefore we may assume that both Q and R have odd orders. Since H is Class 2 and by the fact that if the core of R is not a cycle, then R is Class 1 , we may assume that Q is Class 2.

Let $C_{k}=Q_{\Delta}$ be a cycle of order $k \in\{3,4,5\}$. We need four following claims.

Claim 3. $|Q|=\Delta-3+k$.

Let $|Q|=2 h+1$. Since Q is Class 2 and $\Delta(Q)=\Delta-1 \geq 3$, by Theorems 8 and 10 , Q is critical and 2-edge connected. Moreover, if $Q_{\Delta}=C_{5}$, then $|Q| \geq 7$. Since $Q_{\Delta}=C_{k}$, $k \in\{3,4,5\}$, it follows from Theorems 4, 5 and 8 that

$$
\frac{k(\Delta-1)+(2 h+1-k)(\Delta-2)}{2}=|E(Q)| \geq h(\Delta-1)+1 .
$$

Thus $|Q|=2 h+1 \leq \Delta-3+k$. On the other hand,

$$
|Q| \geq\left|C_{k}\right|+\left|N_{Q}(x) \cap V\left(Q-C_{k}\right)\right|=k+\Delta-3 \quad \text { for every } \quad x \in V\left(C_{k}\right)
$$

since $Q_{\Delta}=C_{k}$ and $\Delta(Q)=\Delta-1$. Thus $|Q|=\Delta-3+k$ and $N_{Q}(x) \supseteq V(Q)-V\left(C_{k}\right)$ for every $x \in V\left(C_{k}\right)$. Therefore the claim is proved, and the following (22) holds.

$$
\begin{equation*}
x y \in E(Q) \quad \text { for every } \quad x \in V\left(Q_{\Delta}\right) \text { and } y \in V(Q)-V\left(Q_{\Delta}\right) . \tag{22}
\end{equation*}
$$

Let $F=\left\{u_{1} v_{1}, \ldots, u_{t} v_{t}\right\}$ be the set of those edges of M such that $u_{i} \in V(Q)$ and $v_{i} \in V(R)$ for every $1 \leq i \leq t$. We show that $V\left(Q_{\Delta}\right) \subseteq\left\{u_{1}, \ldots, u_{t}\right\}$. To the contrary, let $x \in V\left(Q_{\Delta}\right) \backslash\left\{u_{1}, \ldots, u_{t}\right\}$. Since M covers all vertices of G, there exists a vertex $y \in V(Q)-\left\{u_{1}, \ldots, u_{t}\right\}$ such that $x y \in M$. If $y \in V\left(Q_{\Delta}\right)$, then since $x \in V\left(Q_{\Delta}\right), Q_{\Delta}$ is not a cycle, a contradiction. If $y \notin V\left(Q_{\Delta}\right)$, then $x y \in M$ contradicts (22). Since $Q_{\Delta}=C_{k}$, without loss of generality, we may assume that

$$
\begin{gather*}
\qquad V\left(Q_{\Delta}\right)=\left\{u_{1}, \ldots, u_{k}\right\} \subseteq\left\{u_{1}, \ldots, u_{t}\right\} \\
\text { where } u_{i} u_{i+1} \in E\left(Q_{\Delta}\right) \text { for all } 1 \leq i \leq k-1 \text { and } u_{k} u_{1} \in E\left(Q_{\Delta}\right) . \tag{23}
\end{gather*}
$$

Moreover, since G_{Δ} is an induced subgraph of G and $Q_{\Delta}=C_{k}$, we have

$$
\begin{equation*}
u_{i} v_{i} \notin E\left(G_{\Delta}\right) \quad \text { for } \quad i=1, \ldots, t, \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
V\left(R_{\Delta}\right) \cap\left\{v_{1}, \ldots, v_{k}\right\}=\emptyset . \tag{25}
\end{equation*}
$$

Now, we want to give a lower bound for $t=|F|$. First note that if $|F| \leq \Delta-2$, then by Theorem 10, G is Class 1. Now, suppose that $|F|=\Delta-1$. Let $Q^{\prime}=G-R$ and $R^{\prime}=G-Q$. Add a new vertex w_{1} and join w_{1} to each $u_{i}, 1 \leq i \leq t$, and denote the resultant graph by $Q^{\prime \prime}$. Also, do the same thing for R^{\prime} with a new vertex w_{2}, and denote the resultant graph by $R^{\prime \prime}$. Since $|G|>\left|R^{\prime \prime}\right|,\left|Q^{\prime \prime}\right|$ and $\Delta(G) \geq \Delta\left(R^{\prime \prime}\right), \Delta\left(Q^{\prime \prime}\right)$, by the induction hypothesis both $Q^{\prime \prime}$ and $R^{\prime \prime}$ have a Δ-edge coloring with colors $\{1, \ldots, \Delta\}$. By a suitable permutation of colors, one may assume that $c\left(w_{1} u_{i}\right)=c\left(w_{2} v_{i}\right)=i$ for $i=1, \ldots, \Delta-1$, where $c(e)$
denotes the color of e. Then by assigning color i to each edge $u_{i} v_{i}, i=1, \ldots, \Delta-1$, we obtain a Δ-edge coloring of G and so G is Class 1 .

Hence we can assume that $|F| \geq \Delta$. Now, since $|Q|=\Delta-3+k$ and $k \leq 5$, we have $|Q| \leq \Delta+2$. This implies that

$$
\begin{equation*}
\Delta \leq|F| \leq \Delta+2 . \tag{26}
\end{equation*}
$$

By (22) and since $\delta(Q)=\Delta-2$, for every $y \in V(Q)-V\left(Q_{\Delta}\right)$, we have $\Delta-2 \geq$ $d_{Q}(y) \geq k$, which implies

$$
\begin{equation*}
\Delta \geq k+2 . \tag{27}
\end{equation*}
$$

Now, we want to prove the following claim.

Claim 4. If $\left\{u_{i} u_{j}, v_{i} v_{j}\right\} \subseteq E(G)$ for some $i, j \in\{1, \ldots, t\}$, then G is Class 1.

Consider $M^{\prime}=\left(M-\left\{u_{i} v_{i}, u_{j} v_{j}\right\}\right) \cup\left\{u_{i} u_{j}, v_{i} v_{j}\right\}$. Let $Q^{\prime}=Q-\left\{u_{i} u_{j}\right\}$ and $R^{\prime}=$ $R-\left\{v_{i} v_{j}\right\}$. We claim that $G^{\prime}=G-M^{\prime}$ is Class 1 . We show that there exists a path which joins a vertex of Q_{Δ}^{\prime} to a vertex of R_{Δ}^{\prime} in G^{\prime}. First note that since Q is Class 2, by Theorems 8 and 9 , every $v \in V(Q)$ satisfies $\left|N_{Q_{\Delta}}(v)\right| \geq 2$. Thus, $\left|N_{Q_{\Delta}^{\prime}}\left(u_{i}\right)\right| \geq 1$ and $\left|N_{Q_{\Delta}^{\prime}}\left(u_{j}\right)\right| \geq 1$. Moreover, by (21), $\left|N_{R_{\Delta}}(v)\right| \geq 1$ for every $v \in V(R)$. Now, if $v_{j} \notin V\left(R_{\Delta}\right)$, then since $\left|N_{R_{\Delta}}\left(v_{i}\right)\right| \geq 1,\left|N_{R_{\Delta}^{\prime}}\left(v_{i}\right)\right| \geq 1$ which implies that there exists a path which joins a vertex of Q_{Δ}^{\prime} to a vertex of R_{Δ}^{\prime} in G^{\prime}. If $v_{j} \in V\left(R_{\Delta}\right)$, then there exists a path which joins v_{j} to a vertex of Q_{Δ}^{\prime} in G^{\prime}.

If R_{Δ} is a cycle, then G^{\prime} is connected and by induction hypothesis, G^{\prime} is Class 1 and so G is Class 1 . Otherwise, for every component K of $G^{\prime}, \delta\left(K_{\Delta}\right)=1$ and $\Delta\left(K_{\Delta}\right) \leq 2$. Thus by Theorem $8, G^{\prime}$ is Class 1 , so is G and the claim is proved.

Now, two cases may be occurred. First suppose that Q and R are Class 2. Then by (3) and since Q_{Δ} is a cycle, we can suppose that $R_{\Delta}=C_{r}$, for $r=3,4,5$. So, similar to the proof of Claim 3, $|R|=\Delta-3+r$. Now, similar to (23) and with no loss of generality, one can assume that $v_{t} \in V\left(R_{\Delta}\right)$ and so by (24), $u_{t} \notin V\left(Q_{\Delta}\right)$ and $v_{1} \notin V\left(R_{\Delta}\right)$ and so $u_{1} u_{t} \in E(Q)$ and $v_{1} v_{t} \in E(R)$, by (22). By Claim 4, G is Class 1 and we are done.

Next, assume that Q is Class 2 and R is Class 1 . First we prove the following claim.

Claim 5. If $\left|N_{R_{\Delta}}\left(v_{i}\right)\right|+\left|N_{R_{\Delta}}\left(v_{i+1}\right)\right| \leq 3$ for some $1 \leq i \leq k(\bmod k)$, then G is Class 1 .

Without loss of generality, suppose that $\left|N_{R_{\Delta}}\left(v_{1}\right)\right|+\left|N_{R_{\Delta}}\left(v_{2}\right)\right| \leq 3$. First note that if $v_{1} v_{2} \in E(G)$, then by Claim $4, G$ is Class 1 and we are done. So, suppose that $v_{1} v_{2} \notin E(G)$. By (1) and assumptions, we can assume that $\left|N_{R_{\Delta}}\left(v_{1}\right)\right|=1$ and $\left|N_{R_{\Delta}}\left(v_{2}\right)\right| \leq 2$. Let $N_{R_{\Delta}}\left(v_{1}\right)=\{x\}$. Now, consider $Q-\left\{u_{1} u_{2}\right\}$, add a new vertex w_{1} and join w_{1} to u_{1} and u_{2}. Then call the resultant graph by Q^{\prime}. Clearly, $\Delta\left(Q^{\prime}\right)=\Delta(Q)=\Delta-1$. Note that since $\Delta \geq 4, Q_{\Delta}^{\prime}$ is a path and by Theorem $7, Q^{\prime}$ has a $(\Delta-1)$-edge coloring with colors $\{1, \ldots, \Delta-1\}$. Moreover, we can assume that $c\left(w_{1} u_{1}\right)=1$ and $c\left(w_{1} u_{2}\right)=2$.

Now, add a new vertex w_{2} to R, join w_{2} to v_{1} and v_{2} and call the resultant graph by R^{\prime}. By (25), $V\left(R_{\Delta}\right) \cap\left\{v_{1}, v_{2}\right\}=\emptyset$ and so $\Delta\left(R^{\prime}\right)=\Delta(R)=\Delta-1$. We claim that R^{\prime} is Class 1. Let $R^{\prime \prime}=R^{\prime}-\left\{v_{1}\right\}$. Thus $d_{R^{\prime \prime}}\left(w_{2}\right)=1$ and $d_{R^{\prime \prime}}(x)=\Delta-2$ which implies that $x \notin V\left(R_{\Delta}^{\prime \prime}\right)$. We claim that every component K of $R^{\prime \prime}$ is Class 1 and so is $R^{\prime \prime}$. If $\delta\left(K_{\Delta}\right) \leq 1$, then by Theorem $11, K$ is Class 1 . If K_{Δ} is a cycle, then clearly $w_{2} \in V(K)$. Now, by Theorem 8 and since $1=\delta(K)<\Delta(K)-1, K$ is Class 1 . This implies that $R^{\prime \prime}$ is Class 1. Now, by Theorem 6 , since $d_{R}\left(v_{1}\right)=\Delta-1$ and $d_{R}(x)=\Delta-1$ and $R^{\prime \prime}$ is Class $1, R^{\prime}$ has a $(\Delta-1)$-edge coloring with colors $\{1, \ldots, \Delta-1\}$. Moreover, we can assume that $c\left(w_{2} v_{1}\right)=1$ and $c\left(w_{2} v_{2}\right)=2$. Now, color $u_{1} v_{1}$ and $u_{2} v_{2}$ by 1 and 2 , respectively and then color every edge $f \in\left(F-\left\{u_{1} v_{1}, u_{2} v_{2}\right\}\right) \cup\left\{u_{1} u_{2}\right\}$ by Δ to obtain a Δ-edge coloring of G and the claim is proved.

So, we can assume that

$$
\begin{equation*}
\left|N_{R_{\Delta}}\left(v_{i}\right)\right|+\left|N_{R_{\Delta}}\left(v_{i+1}\right)\right| \geq 4 \text { for } i=1, \ldots, k(\bmod k) . \tag{28}
\end{equation*}
$$

This implies that

$$
\sum_{i=1}^{k}\left|N_{R_{\Delta}}\left(v_{i}\right)\right| \geq 2 k
$$

Moreover, since $V\left(G_{\Delta}\right) \cap\left\{u_{k+1}, \ldots, u_{t}\right\}=\emptyset$, (1) yields that $\left|N_{R_{\Delta}}\left(v_{i}\right)\right| \geq 2$ for $i=k+$ $1, \ldots, t$. This implies that

$$
\begin{equation*}
\sum_{i=1}^{t}\left|N_{R_{\Delta}}\left(v_{i}\right)\right| \geq 2 t \tag{29}
\end{equation*}
$$

Now, we want to prove the following claim. Let $L=R-\left\{v_{1}, \ldots, v_{t}\right\}$.

Claim 6. Let $u_{i} u_{j} \in E(G)$ for some $i, j \in\{1, \ldots, t\}$ and $x y \in M \cap E(L)$. If $v_{i} x, v_{j} y \in$ $E(G)$, then G is Class 1 .

Consider $M^{\prime}=\left(M-\left\{u_{i} v_{i}, u_{j} v_{j}, x y\right\}\right) \cup\left\{u_{i} u_{j}, v_{i} x, v_{j} y\right\}$. Let $G^{\prime}=G-M^{\prime}$. Now, remove two edges $v_{i} x$ and $v_{j} y$ of R and add $x y$ to the edges of R and call the resultant
graph by R^{\prime}. By (28) and with no loss of generality, one can assume that $\left|N_{R_{\Delta}}\left(v_{i}\right)\right| \geq 2$. This implies that v_{i} is adjacent to at least one vertex of R_{Δ}^{\prime}. Also, since Q is Class 2 , by Theorems 8 and $9,\left|N_{Q_{\Delta}^{\prime}}\left(u_{i}\right)\right| \geq 1$, where $Q^{\prime}=Q-\left\{u_{i} u_{j}\right\}$. Thus there exists a path which joins one vertex of Q_{Δ}^{\prime} to a vertex of R_{Δ}^{\prime}. Now, if G^{\prime} is connected, then by induction hypothesis, G^{\prime} is Class 1 and so G is Class 1. Otherwise, since there exists a path which joins one vertex of Q_{Δ}^{\prime} to a vertex of R_{Δ}^{\prime}, for every component K of $G^{\prime}, \delta\left(K_{\Delta}\right) \leq 1$ and $\Delta\left(K_{\Delta}\right) \leq 2$. Thus by Theorem $8, K$ is Class 1 and so is G^{\prime}. This implies that G is Class 1 and the claim is proved.

By (23), $V\left(Q_{\Delta}\right) \cap\left\{u_{1}, \ldots, u_{t}\right\}=\left\{u_{1}, \ldots, u_{k}\right\}$, where $k=3,4,5$. Now, by (22), $u_{i} u_{j} \in$ $E(Q)$ for $i=1, \ldots, k$ and $j=k+1, \ldots, t$. Note that $d_{Q}\left(u_{i}\right)=\Delta-1$ and $d_{Q}\left(u_{j}\right)=\Delta-2$ for $i=1, \ldots, k$ and $j=k+1, \ldots, t$, respectively. Now, by Claim $3, u_{i}$ is not adjacent to exactly $k-3$ vertices in the set $\left\{u_{1}, \ldots, u_{t}\right\}$ for $i=1, \ldots, k$. Moreover, u_{j} is not adjacent to at most $k-2$ vertices in the set $\left\{u_{1}, \ldots, u_{t}\right\}$ for $j=k+1, \ldots, t$. Note that if $\left\{u_{i} u_{j}, v_{i} v_{j}\right\} \subseteq E(G)$, for some $i, j \in\{1, \ldots, t\}$, then by Claim 4, G is Class 1 and we are done. Thus, we can suppose that for $k=3,4,5$,

$$
\begin{gathered}
\left|N_{R}\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{t}\right\}\right| \leq k-3 \text { for } i=1, \ldots, k, \\
\left|N_{R}\left(v_{j}\right) \cap\left\{v_{1}, \ldots, v_{t}\right\}\right| \leq k-2 \text { for } j=k+1, \ldots, t .
\end{gathered}
$$

Since $d_{R}\left(v_{i}\right) \geq \Delta-2$ for $i=1, \ldots, t$, we conclude that for $k=3,4,5$,

$$
\begin{align*}
& e_{R}\left(v_{i}, L\right) \geq \Delta-k+1 \text { for } i=1, \ldots, k . \tag{30}\\
& e_{R}\left(v_{j}, L\right) \geq \Delta-k \text { for } j=k+1, \ldots, t . \tag{31}
\end{align*}
$$

Now, two cases may be occurred:
First suppose that $|L| \leq 2 \Delta-2 k+2$. Let $M \cap E(L)=\left\{x_{1} y_{1}, \ldots, x_{m} y_{m}\right\}$. Thus $m \leq \Delta-k+1$. With no loss of generality, suppose that

$$
N_{R}\left(v_{1}\right) \cap V(L)=\left\{x_{1}, \ldots, x_{s+t}, y_{1}, \ldots, y_{s}\right\} .
$$

Thus by (30),

$$
\begin{equation*}
2 s+t \geq \Delta-k+1 \text { for some } s, t \tag{32}
\end{equation*}
$$

Now, if

$$
\left\{x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s+t}\right\} \cap\left(N_{R}\left(v_{2}\right) \cap V(L)\right) \neq \emptyset,
$$

then since $u_{1} u_{2} \in E(Q)$ by Claim 6, we are done. So, we can suppose that

$$
N_{R}\left(v_{2}\right) \cap V(L) \subseteq\left\{x_{s+1}, \ldots, x_{m}, y_{s+t+1}, \ldots, y_{m}\right\} .
$$

Thus by (30), (32) and since $|L| \leq 2 \Delta-2 k+2$,

$$
\begin{aligned}
\left|N_{R}\left(v_{2}\right) \cap V(L)\right| & \leq 2 \Delta-2 k+2-(2 s+t) \\
& \leq 2 \Delta-2 k+2-(\Delta-k+1) \\
& =\Delta-k+1 .
\end{aligned}
$$

So, by (30),

$$
N_{R}\left(v_{2}\right) \cap V(L)=\left\{x_{s+1}, \ldots, x_{m}, y_{s+t+1}, \ldots, y_{m}\right\}
$$

and $|L|=2 \Delta-2 k+2$. Now, if

$$
\left\{x_{s+t+1}, \ldots, x_{m}, y_{s+1}, \ldots, y_{m}\right\} \cap\left(N_{R}\left(v_{3}\right) \cap V(L)\right) \neq \emptyset
$$

then since $u_{2} u_{3} \in E(Q)$ by Claim 6 , we are done. So, by a similar argument as we did for v_{2}, we conclude that

$$
N_{R}\left(v_{3}\right) \cap V(L)=\left\{x_{1}, \ldots, x_{s+t}, y_{1}, \ldots, y_{s}\right\} .
$$

Now, we do this procedure for $v_{i}, i \leq k$ and so

$$
\begin{cases}N\left(v_{k+1}\right) \subseteq N\left(v_{1}\right) & \text { if } k \text { is even } \\ N\left(v_{k+1}\right) \subseteq N\left(v_{2}\right) & \text { if } k \text { is odd }\end{cases}
$$

Now, if $s \geq 1$, then with no loss of generality one may assume that there exists an edge $x_{i} y_{i}$ for some $i=1, \ldots, t$ such that

$$
\begin{cases}\left\{v_{1} x_{i}, v_{k+1} y_{i}\right\} \subseteq E(Q) & \text { if } k \text { is even } \\ \left\{v_{2} x_{i}, v_{k+1} y_{i}\right\} \subseteq E(Q) & \text { if } k \text { is odd. }\end{cases}
$$

Moreover, by (22), $\left\{u_{1} u_{k+1}, u_{2} u_{k+1}\right\} \subseteq E(Q)$ and so by Claim $6, G$ is Class 1 . Thus we can suppose that $s=0$ and so

$$
N\left(v_{i}\right) \subseteq\left\{x_{1}, \ldots, x_{m}\right\} \text { for } i=1, \ldots, t
$$

Now, by pigeonhole principle, (26), (30) and (31), for some $i=1, \ldots, t$,

$$
d_{R}\left(x_{i}\right) \geq \frac{k(\Delta-k+1)+(\Delta-k)^{2}}{\Delta-k+1}
$$

Now, by (27), $d_{R}\left(x_{i}\right)>\Delta-1$, a contradiction.
Now, suppose that $|L|>2 \Delta-2 k+2$. Note that since M is a 1 -factor, L has even order. Thus we can suppose that

$$
\begin{equation*}
|L| \geq 2 \Delta-2 k+4 \tag{33}
\end{equation*}
$$

By (26), let $|F|=\Delta+i$, where $i=0,1,2$. Therefore we find

$$
\begin{equation*}
|R| \geq 3 \Delta-2 k+4+i \tag{34}
\end{equation*}
$$

Now, we want to determine an upper bound for $|R|$. Suppose that $\left|R_{\Delta}\right|=r$. Let X be the set of those vertices of $L-R_{\Delta}$ such that $\left|N_{R_{\Delta}}(x)\right|=1$. So, for every $y \in L-\left(X \cup R_{\Delta}\right)$, $\left|N_{R_{\Delta}}(y)\right| \geq 2$. Note that since G_{Δ} is a disjoint union of cycles, the minimum degree of the core of every component of H_{Δ} is at least 1. Thus, for every $w \in V\left(R_{\Delta}\right)$, since $d_{R}(w)=\Delta-1, e_{R}\left(w, R-R_{\Delta}\right) \leq \Delta-2$. Moreover, let $N_{G_{\Delta}}(x)=\left\{v_{x}, w_{x}\right\}$ such that $N_{R_{\Delta}}(x)=\left\{v_{x}\right\}$. Clearly, $|X|=\left|\left\{w_{x} \mid x \in X\right\}\right|$ and so $e_{R}\left(w_{x}, R-R_{\Delta}\right) \leq \Delta-3$. Let $\left|V\left(R_{\Delta}\right) \cap\left\{v_{1}, \ldots, v_{t}\right\}\right|=d$. Now, since $V\left(R_{\Delta}\right) \cap\left\{v_{1}, \ldots, v_{k}\right\}=\emptyset$, by (28), (29) we find that

$$
\begin{aligned}
& 2(t-d)+|X|+2(|R|-(t+|X|+r-d)) \\
\leq & e_{R}\left(R_{\Delta}, R-R_{\Delta}\right) \\
\leq & |X|(\Delta-3)+(r-|X|)(\Delta-2)
\end{aligned}
$$

This implies that

$$
\begin{equation*}
|R| \leq \frac{r \Delta}{2} \tag{35}
\end{equation*}
$$

Now, by (34),

$$
3 \Delta-2 k+4+i \leq \frac{r \Delta}{2}
$$

Since $r \in\{3,4,5\}$, this implies that

$$
\begin{equation*}
\Delta \leq \frac{4 k-8-2 i}{6-r} \tag{36}
\end{equation*}
$$

Now, three cases can be considered:
(i) $r=3$. Since G_{Δ} has even order, $k \in\{3,5\}$. So, by Claim 3 and since $|Q|$ is odd, Δ is odd. Now, by (36), $\Delta \leq 4$. Thus $\Delta=4$, a contradiction.
(ii) $r=4$. Since G_{Δ} has even order, $k=4$. Moreover, by Claim 3, $|Q|=\Delta+1$ and so $i=1$. Thus, by (36) we conclude that $\Delta \leq 3$, a contradiction.
(iii) $r=5$. Since G_{Δ} has even order and $\left|G_{\Delta}\right| \leq 8, k=3$. Moreover, by Claim 3 and since $|Q|$ is odd, Δ is odd. Now, by $(36), \Delta \leq 3$, a contradiction and the proof is complete.

References

[1] S. Akbari, D. Cariolaro, M. Chavoshi, M. Ghanbari, S. Zare, Some Criteria for a graph to be Class 1, submitted.
[2] J.A. Bondy and U. S. R. Murty, Graph Theory with Applications, North Holland, New York, 1976.
[3] D. Cariolaro, G. Cariolaro, Colouring the petals of a graph, Electronic Journal of Combinatorics, 10 (2003), \#R6.
[4] A.G. Chetwynd and A.J.W. Hilton, A Δ-subgraph condition for a graph to be Class 1, J. Combin. Theory Ser. B, 46 (1989), 37-45.
[5] A.G. Chetwynd and A.J.W. Hilton, The chromatic index of graphs with at most four vertices of maximum degree, Congressus Numerantium, 43 (1984), 221-248.
[6] A.G. Chetwynd and A.J.W. Hilton, Regular graphs of high degree are 1-factorizable, Proc. London Math. Soc., 50 (1985), 193-6.
[7] A.G. Chetwynd and A.J.W. Hilton, 1-factorizing regular graphs of high degree an improved bound, Discrete Math., 75 (1989), 103-112.
[8] S.A. Choudum, K.Kayathri, An extension of Vizing's adjacency lemma on edge chromatic critical graphs, Discrete Math., 206 (1999), 97-103.
[9] J.K. Dugdale and A.J.W. Hilton, A sufficient condition for a graph to be the core of a Class 1 graph, Combinat. Prob. Comput., 9 (2000), 97-104.
[10] S. Fiorini and R.J. Wilson, Edge-colourings of graphs, Research Notes in Mathematics, Pitman, 1977.
[11] J.-C. Fournier, Coloration des aretes dun graphe, Cahiers du CERO (Bruxelles), 15 (1973), 311-314.
[12] A.J.W. Hilton, Two conjectures on edge-colouring, Discrete Math., 74 (1989), 61-64.
[13] A.J.W. Hilton and C. Zhao, A sufficient condition for a regular graph to be Class 1, J. Graph Theory, (6) 17 (1993), 701-712.
[14] A.J.W. Hilton and C. Zhao, On the edge-colouring of graphs whose core has maximum degree two, JCMCC, 21 (1996), 97-108.
[15] A.J.W. Hilton and C. Zhao, The chromatic index of a graph whose core has maximum degree two, Discrete Math., 101 (1992), 135-147.
[16] D.G. Hoffman, Cores of Class II graphs, J. Graph Theory, 20 (1995), 397-402.
[17] I. Holyer, The NP-completeness of edge-colouring, SIAM Journal of Comp. 10 (1981), 718-720.
[18] A. Schrijver, Advanced Graph Theory and Combinatorial Optimization, (2001) (http://homepages.cwi.nl/ lex/).
[19] Z. Song and H. P. Yap, Chromatic index critical graphs of even order with five major vertices, Graph and Combinatorics, 21 (2005), 239-246.
[20] Z. Song, Chromatic index critical graphs of odd order with five major vertices, J. Combin. Math. Combin. Comput. 41 (2002), 161-186.
[21] V.G. Vizing, On an estimate of the chromatic class of a p-graph, (in Russian), Diskret. Analiz., 3 (1964), 25-30.
[22] V.G. Vizing, Critical graphs with a given chromatic class (in Russian), Diskret. Analiz. 5 (1965) 6-17.

[^0]: *Key Words: Edge coloring, Core, Class 1.
 ${ }^{\dagger} 2010$ Mathematics Subject Classification: 05C15, 05C38.
 ${ }^{\ddagger}$ E-mail addresses: s_akbari@sharif.edu, maryamghanbari@mail.ipm.ir, kano@mx.ibaraki.ac.jp, nikmehr@kntu.ac.ir.

