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Abstract

Let G be a graph. The core of G, denoted by G∆, is the subgraph of G induced by

the vertices of degree ∆(G), where ∆(G) denotes the maximum degree of G. A k-edge

coloring of G is a function f : E(G) → L such that |L| = k and f(e1) 6= f(e2) for all

two adjacent edges e1 and e2 of G. The chromatic index of G, denoted by χ′(G), is

the minimum number k for which G has a k-edge coloring. A graph G is said to be

Class 1 if χ′(G) = ∆(G) and Class 2 if χ′(G) = ∆(G) + 1. In this paper it is shown

that every connected graph G of even order and ∆(G∆) ≤ 2 is Class 1 if |G∆| ≤ 9 or

G∆ is a cycle of order 10.

1 Introduction

All graphs considered in this paper are finite, undirected, with no loops or multiple edges.

Let G be a graph. Then V (G) and E(G) denote the vertex set and the edge set of G,

respectively. The number of vertices of G is called the order of G and denoted by |G|. Also,

∆(G) and δ(G) denote the maximum degree and the minimum degree of G, respectively.

The core of G, denoted by G∆, is the subgraph of G induced by all vertices of degree

∆(G). We denote the cycle of order n by Cn. Let H be a subgraph of G. For a vertex
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u of H, dH(u) denotes the degree of u in H, and for every vertex v of G, NH(v) denotes

NG(v) ∩ V (H), where NG(v) is the neighborhood of v in G.

A matching in a graph G is a set of pairwise non-adjacent edges and a 1-factor is a

matching which covers V (G). Let S ⊆ V (G) and H be a component of G− S. We call H

an odd component if H has odd order. The number of odd components of G is denoted by

odd(G). For a subset X ⊆ V (G) (Y ⊆ E(G)), G−X (G−Y ) denotes the graph obtained

from G by deleting all vertices (edges) of X (Y ), respectively. Moreover, we mean G−H,

the induced subgraph on V (G)− V (H).

A k-edge coloring of a graph G is a function f : E(G) −→ L such that |L| = k and

f(e1) 6= f(e2) for all two adjacent edges e1 and e2 of G. A graph G is k-edge colorable if

G has a k-edge coloring. The chromatic index of G, denoted by χ′(G), is the minimum

number k for which G has a k-edge coloring. For a general introduction to the edge

coloring, the interested reader is referred to [10].

A celebrated result due to Vizing [21] states that for every graph G, ∆(G) ≤ χ′(G) ≤
∆(G)+1. A graph G is said to be Class 1 if χ′(G) = ∆(G) and Class 2 if χ′(G) = ∆(G)+1.

Moreover, a connected graph G is called critical if it is Class 2 and G − e is Class 1 for

every edge e ∈ E(G). A graph G is called overfull if |E(G)| >
⌊ |V (G)|
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⌋
∆(G). It is easy to

see that, if G is overfull, then G is Class 2. For more information about overfull graphs

see [12]. In [19] it was proved that there is no critical connected graph G of even order

with |G∆| ≤ 5.

Let H,Q and R be subgraphs of G. We denote the number of edges of H with one end

point in Q and another end point in R by eH(Q,R). For a subset S ⊆ V (G), we denote

the induced subgraph of G on S by 〈S〉G.

Classifying a graph into Class 1 and Class 2 is a difficult problem in general (indeed,

NP hard), even when restricted to the class of graphs with maximum degree 3 (see [17]).

As a consequence, this problem is usually considered on classes of graphs with particular

classes of cores. One possibility is to consider a graph whose core has a simple structure

(see [4, 7, 9, 11, 13, 14, 15, 16, 22]). Vizing [22] proved that, if G∆ has no edge, then G

is Class 1. Fournier [11] generalized Vizing’s result by proving that, if G∆ contains no

cycle, then G is Class 1. Thus a necessary condition for a graph to be Class 2 is to have

a core containing cycles. Hilton and Zhao [14, 15] considered the problem of classifying

graphs whose cores are a disjoint union of cycles. Only a few such graphs are known to

be Class 2. These include the overfull graphs and the graph P ∗, which is obtained from
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the Petersen graph by removing one vertex and has order 9. Furthermore, they posed the

following conjecture.

Conjecture 1. Let G be a connected graph such that ∆(G∆) ≤ 2. Then G is Class 2 if

and only if G is overfull, unless G 6= P ∗.

In [3], the following theorem was proved:

Theorem 1. Let G be a connected graph such that ∆(G∆) ≤ 2, ∆(G) = 3 and G 6= P ∗.

Then G is Class 1.

In [6] the following result was proved.

Theorem 2. Let G be a connected graph with |G∆| = 3. Then G is Class 2 if and only if

for some integer n, G is obtained from K2n+1 by removing n− 1 independent edges.

An edge cut is a set of edges whose removal produces a subgraph with more components

than the original graph. So a k-edge-connected graph has no edge cut of size k − 1.

Two following results provide some conditions under which a graph G with |G∆| = 4

is Class 1.

Theorem 3.[5] Let G be a 2-edge-connected graph of even order with |G∆| = 4. Then G

is Class 1.

Theorem 4.[5] Let 3 ≤ r ≤ 4 be an integer and G be an (r − 2)-edge-connected graph of

order 2n + 1 with |G∆| ≤ r. Then G is Class 2 if and only if |E(G)| ≥ n∆(G) + 1.

Theorem 5.[20] Let G be a critical connected graph with ∆(G) ≥ 3. Further suppose that

G has 2n + 1 ≥ 7 vertices and |G∆| = 5. Then |E(G)| = n∆(G) + 1.

The following useful result, which follows from Vizing’s Adjacency Lemma [8], is given

in Schrijver’s homepage [18, p.1765].

Theorem 6. Suppose k is a natural number. Let v be a vertex of a graph G such that v

and all its neighbors have degree at most k, while at most one neighbor has degree precisely

k. Then G is k-edge colorable if G− {v} is k-edge colorable.
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The previous theorem implies the following well-known result which is due to Fournier.

Theorem 7.[11] If G∆ is a forest, then G is Class 1.

Theorem 8.[15] Let G be a connected graph of Class 2 and ∆(G∆) ≤ 2. Then the

following statements hold.

(i) G is critical;

(ii) δ(G∆) = 2;

(iii) δ(G) = ∆(G)− 1, unless G is an odd cycle.

Theorem 9.[15] Let G be a critical connected graph. Then every vertex of G is adjacent

to at least two vertices of G∆.

Theorem 10.[1] Let G be a connected graph with ∆(G∆) ≤ 2. Suppose that G has an

edge cut of size at most ∆(G)− 2 which is a matching or a star. Then G is Class 1.

A connected graph is called unicyclic if it contains precisely one cycle.

Theorem 11.[1] Let G be a connected graph. If every component of G∆ is a unicyclic

graph or a tree and G∆ is not a disjoint union of cycles, then G is Class 1.

Theorem 12.[1] Let G be a connected graph of even order. If ∆(G∆) ≤ 2 and |G∆| is

odd, then G is Class 1.

Now, we are in a position to prove our main theorem.

Theorem 13. Let G be a connected graph of even order and ∆(G∆) ≤ 2. If |G∆| ≤ 9 or

G∆ = C10, then G is Class 1.

Proof. For simplicity, let ∆ = ∆(G). The proof is by induction on ∆+ |G|. First note that

if δ(G∆) ≤ 1 or δ(G) < ∆− 1 or there exists a vertex x ∈ V (G) such that |NG∆
(x)| ≤ 1,

then by Theorems 8 and 9, G is Class 1 and we are done. Thus, one can easily assume

that G∆ is a disjoint union of cycles, δ(G) = ∆− 1 and

|NG∆
(x)| ≥ 2 for every x ∈ V (G). (1)
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By (1), we find that 2(|G| − |G∆|) ≤ eG(G∆, G−G∆) = (∆− 2)|G∆|, and so

|G| ≤ ∆|G∆|
2

≤ 5∆. (2)

Moreover, if |G∆| is odd, then by Theorem 12, G is Class 1. Thus we can assume that

|G∆| is even, G∆ is a disjoint union of cycles and |G∆| ≤ 8 or G∆ = C10. (3)

Note that since G∆ is a disjoint union of cycles, ∆ ≥ 2. If ∆ = 2, then by the connectivity

of G, G is a cycle of even order and so G is Class 1. If ∆ = 3, then since |G| is even,

by Theorem 1, the assertion is proved. So we may assume that ∆ ≥ 4. If G has an edge

cut of size at most 2, then by Theorem 10, G is Class 1 and we are done. Thus we can

suppose that G is 3-edge connected. First we prove the following claim.

Claim 1. G has a 1-factor.

To the contrary, by Tutte’s 1-factor Theorem [2, p.44] and by the assumption that G

is of even order, there exists a non-empty subset T ⊆ V (G) such that odd(G − T ) > |T |.
Let m = odd(G − T ). Since |G| is even, we have m ≡ |T | (mod 2), which implies that

m ≥ |T |+2. First assume T = {u}. Then there exists a component D of G−T such that

eG(u, D) ≤ ∆− 2 by m ≥ 3. So by Theorem 10, G is Class 1 and we are done. Thus we

may assume |T | ≥ 2.

Let B1, . . . , Bc (big) and S1, . . . , Sd (small) be the odd components of G−T such that

|Bi| ≥ ∆ for every 1 ≤ i ≤ c and |Sj | ≤ ∆− 1 for every 1 ≤ j ≤ d, where m = c+ d. Since

|T | ≤ m− 2,

|T | ≤ c + d− 2. (4)

Also, since G is 3-edge connected,

eG(T,Bi) ≥ 3 for every 1 ≤ i ≤ c.

For every 1 ≤ j ≤ d, since 1 ≤ |Sj | ≤ ∆− 1 = δ(G), the following hold:

eG(T, Sj) =
∑

x∈V (Sj)

eG(T, x)

≥ (δ(G)− (|Sj | − 1))|Sj |

≥ (∆− |Sj |)|Sj | (5)

≥ ∆− 1. (6)
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Let q = |T ∩ V (G∆)| and r = |E(〈T 〉G) ∩ E(G∆)|. Since G∆ is a 2-regular graph of

order at most 10, the number of edges of G∆ joining T to V (G)− T satisfies

2q − 2r = eG∆
(T,G− T ) ≤ 2(|G∆| − q) ≤ 2(10− q).

Hence

q ≤ 5 +
r

2
. (7)

Since |NG∆
(x)| ≥ 2 for every x ∈ V (G), |Bj | ≥ ∆ and since G is 3-edge connected, we

obtain that

eG(T,Bj) ≥


3 if |V (Bj) ∩ V (G∆)| ≥ 2,

∆ + 1 if |V (Bj) ∩ V (G∆)| = 1,

2∆ otherwise.

(8)

Let c0, c1 and c2 be the number of components Bj ’s such that |V (Bj) ∩ V (G∆)| = 0,

|V (Bj)∩ V (G∆)| = 1 and |V (Bj)∩ V (G∆)| ≥ 2, respectively. It is easy to see that c2 ≤ 3

by |G∆| ≤ 10. Moreover, c = c0 + c1 + c2 and

eG(T,B1 ∪ · · · ∪Bc) ≥ 3c2 + (∆ + 1)c1 + 2∆c0

= (∆− 1)c− (∆− 4)c2 + 2c1 + (∆ + 1)c0. (9)

Obviously, using (6) and (9), we have

q∆− 2r + (|T | − q)(∆− 1)

≥ eG(T,B1 ∪ · · · ∪Bc ∪ S1 ∪ · · · ∪ Sd) (10)

≥ (∆− 1)c− (∆− 4)c2 + 2c1 + (∆ + 1)c0 + (∆− 1)d. (11)

This implies that

(|T | − c− d)(∆− 1) + q − 2r + (∆− 4)c2 − 2c1 − (∆ + 1)c0 ≥ 0. (12)

On the other hand, by (4) and (7), we obtain that

(|T | − c− d)(∆− 1) + q − 2r + (∆− 4)c2 − 2c1 − (∆ + 1)c0

≤ −2(∆− 1) + 5− 3r

2
+ (∆− 4)c2 − 2c1 − (∆ + 1)c0. (13)

Hence, if c2 ≤ 2, then

(|T | − c− d)(∆− 1) + q − 2r + (∆− 4)c2 − c1 − (∆ + 1)c0 < 0. (14)
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This contradicts (12). Thus, one can assume that c2 = 3 by c2 ≤ 3. If c0 ≥ 1, then

similarly (14) holds by (13), and we get a contradiction. So, c0 = 0. We show that

c = c2 = 3 and V (G∆) ⊆ T ∪ (∪3
i=1Bi). (15)

To the contrary, let D be a component of G−(T∪(∪3
i=1Bi)) such that |V (D)∩V (G∆)| ≥ 1.

Now, since c2 = 3 and |G∆| ≤ 10, we have q ≤ 3. Note that if q ≤ 1, then G∆ is a disjoint

union of at least four cycles, a contradiction. If q = 2, then G∆ consists of at least three

cycles and |G∆| ≥ 11, a contradiction. If q = 3, then G∆ consists of at least two cycles

and |G∆| ≥ 11, a contradiction. Therefore (15) holds.

By (15) G∆ passes through exactly three components of G− T . By (11) and (15),

q − 2r + |T |(∆− 1) ≥ 9 + (∆− 1)d. (16)

Now, if d ≥ |T |, then by ∆ ≥ 4,

q − 2r ≥ 9 + (d− |T |)(∆− 1) ≥ 9,

which contradicts (7). Thus, we can suppose that d ≤ |T | − 1. Now, by c = 3 and (4),

d = |T | − 1. (17)

By (5), (8), (10) and (15), we obtain that

q − 2r + |T |(∆− 1) ≥ 9 +
d∑

j=1

(∆− |Sj |)|Sj |.

Thus

(|T | − d)(∆− 1) + q − 2r − 9−
d∑

j=1

(
(∆− |Sj |)|Sj | − (∆− 1)

)
≥ 0. (18)

On the other hand, by (7) and (17) , we find that

(|T | − d)(∆− 1) + q − 2r − 9−
d∑

j=1

(
(∆− |Sj |)|Sj | − (∆− 1)

)
≤ ∆− 10 + 5− 3

2
r −

d∑
j=1

(
(∆− |Sj |)|Sj | − (∆− 1)

)
.

If ∆ = 4, then |Sj | = 1 or 3 and so (∆− |Sj |)|Sj | − (∆− 1) = 0 for all j. Thus

∆− 10 + 5− 3
2
r −

d∑
j=1

(
(∆− |Sj |)|Sj | − (∆− 1)

)
= 4− 10 + 5− 3

2
r

= −1− 3
2
r < 0.
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This contradicts (18). Hence ∆ ≥ 5. If 3 ≤ |Sk| ≤ ∆ − 2 for some k, then −
(
(∆ −

|Sk|)|Sk| − (∆− 1)
)
≤ −∆ + 3. So,

∆− 10 + 5− 3
2
r −

d∑
j=1

(
(∆− |Sj |)|Sj | − (∆− 1)

)
≤ ∆− 10 + 5− 3

2
r −∆ + 3

= −2− 3
2
r < 0.

This contradicts (18). Therefore, since |Sj | is odd, we conclude that

∆ ≥ 5, and |Sj | = 1 or ∆− 1 for every 1 ≤ j ≤ d. (19)

By (6), (15), (17) and by the fact that every vertex u of T is adjacent to at least two

vertices of G∆, we find that

|T |(∆− 2) ≥ eG(T,∪d
j=1Sj) ≥ d(∆− 1) = (|T | − 1)(∆− 1). (20)

This concludes that |T | ≤ ∆− 1.

First assume that |Sk| = 1 for some k, 1 ≤ k ≤ d. Let V (Sk) = {w}. Then since

dG(w) = ∆ − 1, |T | ≥ ∆ − 1. Thus |T | = ∆ − 1 and d = ∆ − 2 by (17). It follows from

(2) that

4∆− 1 +
∆−2∑
j=1

|Sj | ≤ |T |+ |B1|+ |B2|+ |B3|+
d∑

j=1

|Sj | ≤ |G| ≤ 5∆.

Hence |Sj | = 1 for all 1 ≤ j ≤ d by (19). Let Sj = {xj}, 1 ≤ j ≤ d. Then NG(xj) = T

for every j, and so for every vertex u ∈ T , eG(u,∪d
j=1Sj) = d = ∆ − 2, which implies

dG(u) = ∆ as |NG∆
(u)| ≥ 2. So T ⊂ V (G∆) and eG(u,∪3

i=1Bi) ≤ 2 for every u ∈ T . Now,

since c2 = 3, q ≤ 4 and eG(T,Bi) ≥ 3, we obtain

3× 3 ≤ eG(T,B1 ∪B2 ∪B3) ≤ |T | × 2 = q × 2 ≤ 8.

This is a contradiction.

Next, suppose that |Sj | = ∆ − 1 for every 1 ≤ j ≤ d. Then it follows from (1) and

(15) that eG(T, Sj) ≥ 2|Sj | = 2∆ − 2 for every 1 ≤ j ≤ d and eG(u,∪d
j=1Sj) ≤ ∆ − 2 for

every u ∈ T . Then similar to (20), we have

|T |(∆− 2) ≥ eG(T,∪d
j=1Sj) ≥ (|T | − 1)(2∆− 2),
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and so |T | = 1. This is a contradiction with |T | ≥ 2. Consequently the proof of the claim

is complete.

Now, let M be a 1-factor of G, and H = G−M . Then ∆(H) = ∆−1, δ(H) = δ(G)−1,

V (H∆) = V (G∆), H∆ ⊆ G∆, δ(H∆) ≥ δ(G∆)− 1 = 1, and by (1),

|NH(v) ∩ V (H∆)| ≥ 1 for every v ∈ V (H). (21)

It is obvious that if H is Class 1, then so is G. Thus we can assume that H is Class 2. In

particular, H is not connected since otherwise by induction hypothesis, H is Class 1.

Claim 2. G∆ consists of exactly two disjoint cycles.

By (3), G∆ is a disjoint union of cycles. Now, suppose that G∆ is a cycle. If δ(H∆) = 1,

then by Theorem 7, every component of H is Class 1, and so is H, a contradiction. Hence

we may assume that H∆ is a cycle. By (21), H is connected, a contradiction. Thus G∆

is a disjoint union of at least two cycles. By (3), G∆ is a disjoint union of two cycles.

Therefore the claim is proved.

Now, we want to show that H has a component whose core is a cycle. First note that

by (21), every component of H contains at least one vertex of H∆. If the core of each

component of H has a vertex of degree 1, then by Theorem 8, each component of H is

Class 1 and so H is Class 1, a contradiction. Thus H contains at least one component,

say Q, whose core is a disjoint union of cycles. If Q∆ contains exactly two cycles, then by

(21) Q = H. Thus H is connected, a contradiction. Therefore Q∆ is a cycle.

Let R = H−Q. Clearly, since |G| is even, |Q| ≡ |R| (mod 2). First assume that Q has

even order. Then by induction hypothesis Q is Class 1. Moreover, if the core of R is not

a cycle, then by Theorem 7, R is Class 1. If the core of R is a cycle, then R is connected,

and since |R| is even, by induction hypothesis R is Class 1, and so is H, a contradiction.

Therefore we may assume that both Q and R have odd orders. Since H is Class 2 and by

the fact that if the core of R is not a cycle, then R is Class 1, we may assume that Q is

Class 2.

Let Ck = Q∆ be a cycle of order k ∈ {3, 4, 5}. We need four following claims.

Claim 3. |Q| = ∆− 3 + k.
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Let |Q| = 2h + 1. Since Q is Class 2 and ∆(Q) = ∆ − 1 ≥ 3, by Theorems 8 and 10,

Q is critical and 2-edge connected. Moreover, if Q∆ = C5, then |Q| ≥ 7. Since Q∆ = Ck,

k ∈ {3, 4, 5}, it follows from Theorems 4, 5 and 8 that

k(∆− 1) + (2h + 1− k)(∆− 2)
2

= |E(Q)| ≥ h(∆− 1) + 1.

Thus |Q| = 2h + 1 ≤ ∆− 3 + k. On the other hand,

|Q| ≥ |Ck|+ |NQ(x) ∩ V (Q− Ck)| = k + ∆− 3 for every x ∈ V (Ck)

since Q∆ = Ck and ∆(Q) = ∆− 1. Thus |Q| = ∆− 3 + k and NQ(x) ⊇ V (Q)−V (Ck) for

every x ∈ V (Ck). Therefore the claim is proved, and the following (22) holds.

xy ∈ E(Q) for every x ∈ V (Q∆) and y ∈ V (Q)− V (Q∆). (22)

Let F = {u1v1, . . . , utvt} be the set of those edges of M such that ui ∈ V (Q) and

vi ∈ V (R) for every 1 ≤ i ≤ t. We show that V (Q∆) ⊆ {u1, . . . , ut}. To the contrary,

let x ∈ V (Q∆) \ {u1, . . . , ut}. Since M covers all vertices of G, there exists a vertex

y ∈ V (Q) − {u1, . . . , ut} such that xy ∈ M . If y ∈ V (Q∆), then since x ∈ V (Q∆), Q∆ is

not a cycle, a contradiction. If y 6∈ V (Q∆), then xy ∈ M contradicts (22). Since Q∆ = Ck,

without loss of generality, we may assume that

V (Q∆) = {u1, . . . , uk} ⊆ {u1, . . . , ut},

where uiui+1 ∈ E(Q∆) for all 1 ≤ i ≤ k − 1 and uku1 ∈ E(Q∆). (23)

Moreover, since G∆ is an induced subgraph of G and Q∆ = Ck, we have

uivi 6∈ E(G∆) for i = 1, . . . , t, (24)

and

V (R∆) ∩ {v1, . . . , vk} = ∅. (25)

Now, we want to give a lower bound for t = |F |. First note that if |F | ≤ ∆−2, then by

Theorem 10, G is Class 1. Now, suppose that |F | = ∆−1. Let Q′ = G−R and R′ = G−Q.

Add a new vertex w1 and join w1 to each ui, 1 ≤ i ≤ t, and denote the resultant graph by

Q′′. Also, do the same thing for R′ with a new vertex w2, and denote the resultant graph

by R′′. Since |G| > |R′′|, |Q′′| and ∆(G) ≥ ∆(R′′),∆(Q′′), by the induction hypothesis

both Q′′ and R′′ have a ∆-edge coloring with colors {1, . . . ,∆}. By a suitable permutation

of colors, one may assume that c(w1ui) = c(w2vi) = i for i = 1, . . . ,∆ − 1, where c(e)
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denotes the color of e. Then by assigning color i to each edge uivi, i = 1, . . . ,∆ − 1, we

obtain a ∆-edge coloring of G and so G is Class 1.

Hence we can assume that |F | ≥ ∆. Now, since |Q| = ∆ − 3 + k and k ≤ 5, we have

|Q| ≤ ∆ + 2. This implies that

∆ ≤ |F | ≤ ∆ + 2. (26)

By (22) and since δ(Q) = ∆ − 2, for every y ∈ V (Q) − V (Q∆), we have ∆ − 2 ≥
dQ(y) ≥ k, which implies

∆ ≥ k + 2. (27)

Now, we want to prove the following claim.

Claim 4. If {uiuj , vivj} ⊆ E(G) for some i, j ∈ {1, . . . , t}, then G is Class 1.

Consider M ′ = (M − {uivi, ujvj}) ∪ {uiuj , vivj}. Let Q′ = Q − {uiuj} and R′ =

R − {vivj}. We claim that G′ = G − M ′ is Class 1. We show that there exists a path

which joins a vertex of Q′
∆ to a vertex of R′

∆ in G′. First note that since Q is Class 2,

by Theorems 8 and 9, every v ∈ V (Q) satisfies |NQ∆
(v)| ≥ 2. Thus, |NQ′

∆
(ui)| ≥ 1 and

|NQ′
∆
(uj)| ≥ 1. Moreover, by (21), |NR∆

(v)| ≥ 1 for every v ∈ V (R). Now, if vj 6∈ V (R∆),

then since |NR∆
(vi)| ≥ 1, |NR′

∆
(vi)| ≥ 1 which implies that there exists a path which joins

a vertex of Q′
∆ to a vertex of R′

∆ in G′. If vj ∈ V (R∆), then there exists a path which

joins vj to a vertex of Q′
∆ in G′.

If R∆ is a cycle, then G′ is connected and by induction hypothesis, G′ is Class 1 and

so G is Class 1. Otherwise, for every component K of G′, δ(K∆) = 1 and ∆(K∆) ≤ 2.

Thus by Theorem 8, G′ is Class 1, so is G and the claim is proved.

Now, two cases may be occurred. First suppose that Q and R are Class 2. Then by

(3) and since Q∆ is a cycle, we can suppose that R∆ = Cr, for r = 3, 4, 5. So, similar to

the proof of Claim 3, |R| = ∆− 3 + r. Now, similar to (23) and with no loss of generality,

one can assume that vt ∈ V (R∆) and so by (24), ut 6∈ V (Q∆) and v1 6∈ V (R∆) and so

u1ut ∈ E(Q) and v1vt ∈ E(R), by (22). By Claim 4, G is Class 1 and we are done.

Next, assume that Q is Class 2 and R is Class 1. First we prove the following claim.

Claim 5. If |NR∆
(vi)|+ |NR∆

(vi+1)| ≤ 3 for some 1 ≤ i ≤ k (mod k), then G is Class 1.
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Without loss of generality, suppose that |NR∆
(v1)|+ |NR∆

(v2)| ≤ 3. First note that if

v1v2 ∈ E(G), then by Claim 4, G is Class 1 and we are done. So, suppose that v1v2 6∈ E(G).

By (1) and assumptions, we can assume that |NR∆
(v1)| = 1 and |NR∆

(v2)| ≤ 2. Let

NR∆
(v1) = {x}. Now, consider Q − {u1u2}, add a new vertex w1 and join w1 to u1 and

u2. Then call the resultant graph by Q′. Clearly, ∆(Q′) = ∆(Q) = ∆ − 1. Note that

since ∆ ≥ 4, Q′
∆ is a path and by Theorem 7, Q′ has a (∆− 1)-edge coloring with colors

{1, . . . ,∆− 1}. Moreover, we can assume that c(w1u1) = 1 and c(w1u2) = 2.

Now, add a new vertex w2 to R, join w2 to v1 and v2 and call the resultant graph by

R′. By (25), V (R∆) ∩ {v1, v2} = ∅ and so ∆(R′) = ∆(R) = ∆ − 1. We claim that R′

is Class 1. Let R′′ = R′ − {v1}. Thus dR′′(w2) = 1 and dR′′(x) = ∆ − 2 which implies

that x 6∈ V (R′′
∆). We claim that every component K of R′′ is Class 1 and so is R′′. If

δ(K∆) ≤ 1, then by Theorem 11, K is Class 1. If K∆ is a cycle, then clearly w2 ∈ V (K).

Now, by Theorem 8 and since 1 = δ(K) < ∆(K)− 1, K is Class 1. This implies that R′′

is Class 1. Now, by Theorem 6, since dR(v1) = ∆− 1 and dR(x) = ∆− 1 and R′′ is Class

1, R′ has a (∆ − 1)-edge coloring with colors {1, . . . ,∆ − 1}. Moreover, we can assume

that c(w2v1) = 1 and c(w2v2) = 2. Now, color u1v1 and u2v2 by 1 and 2, respectively and

then color every edge f ∈ (F − {u1v1, u2v2}) ∪ {u1u2} by ∆ to obtain a ∆-edge coloring

of G and the claim is proved.

So, we can assume that

|NR∆
(vi)|+ |NR∆

(vi+1)| ≥ 4 for i = 1, . . . , k (mod k). (28)

This implies that
k∑

i=1

|NR∆
(vi)| ≥ 2k.

Moreover, since V (G∆) ∩ {uk+1, . . . , ut} = ∅, (1) yields that |NR∆
(vi)| ≥ 2 for i = k +

1, . . . , t. This implies that
t∑

i=1

|NR∆
(vi)| ≥ 2t. (29)

Now, we want to prove the following claim. Let L = R− {v1, . . . , vt}.

Claim 6. Let uiuj ∈ E(G) for some i, j ∈ {1, . . . , t} and xy ∈ M ∩ E(L). If vix, vjy ∈
E(G), then G is Class 1.

Consider M ′ = (M − {uivi, ujvj , xy}) ∪ {uiuj , vix, vjy}. Let G′ = G − M ′. Now,

remove two edges vix and vjy of R and add xy to the edges of R and call the resultant
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graph by R′. By (28) and with no loss of generality, one can assume that |NR∆
(vi)| ≥ 2.

This implies that vi is adjacent to at least one vertex of R′
∆. Also, since Q is Class 2, by

Theorems 8 and 9, |NQ′
∆
(ui)| ≥ 1, where Q′ = Q−{uiuj}. Thus there exists a path which

joins one vertex of Q′
∆ to a vertex of R′

∆. Now, if G′ is connected, then by induction

hypothesis, G′ is Class 1 and so G is Class 1. Otherwise, since there exists a path which

joins one vertex of Q′
∆ to a vertex of R′

∆, for every component K of G′, δ(K∆) ≤ 1 and

∆(K∆) ≤ 2. Thus by Theorem 8, K is Class 1 and so is G′. This implies that G is Class

1 and the claim is proved.

By (23), V (Q∆) ∩ {u1, . . . , ut} = {u1, . . . , uk}, where k = 3, 4, 5. Now, by (22), uiuj ∈
E(Q) for i = 1, . . . , k and j = k + 1, . . . , t. Note that dQ(ui) = ∆− 1 and dQ(uj) = ∆− 2

for i = 1, . . . , k and j = k + 1, . . . , t, respectively. Now, by Claim 3, ui is not adjacent

to exactly k − 3 vertices in the set {u1, . . . , ut} for i = 1, . . . , k. Moreover, uj is not

adjacent to at most k − 2 vertices in the set {u1, . . . , ut} for j = k + 1, . . . , t. Note that if

{uiuj , vivj} ⊆ E(G), for some i, j ∈ {1, . . . , t}, then by Claim 4, G is Class 1 and we are

done. Thus, we can suppose that for k = 3, 4, 5,

|NR(vi) ∩ {v1, . . . , vt}| ≤ k − 3 for i = 1, . . . , k,

|NR(vj) ∩ {v1, . . . , vt}| ≤ k − 2 for j = k + 1, . . . , t.

Since dR(vi) ≥ ∆− 2 for i = 1, . . . , t, we conclude that for k = 3, 4, 5,

eR(vi, L) ≥ ∆− k + 1 for i = 1, . . . , k. (30)

eR(vj , L) ≥ ∆− k for j = k + 1, . . . , t. (31)

Now, two cases may be occurred:

First suppose that |L| ≤ 2∆ − 2k + 2. Let M ∩ E(L) = {x1y1, . . . , xmym}. Thus

m ≤ ∆− k + 1. With no loss of generality, suppose that

NR(v1) ∩ V (L) = {x1, . . . , xs+t, y1, . . . , ys}.

Thus by (30),

2s + t ≥ ∆− k + 1 for some s, t. (32)

Now, if

{x1, . . . , xs, y1, . . . , ys+t} ∩ (NR(v2) ∩ V (L)) 6= ∅,

then since u1u2 ∈ E(Q) by Claim 6, we are done. So, we can suppose that

NR(v2) ∩ V (L) ⊆ {xs+1, . . . , xm, ys+t+1, . . . , ym}.
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Thus by (30), (32) and since |L| ≤ 2∆− 2k + 2,

|NR(v2) ∩ V (L)| ≤ 2∆− 2k + 2− (2s + t)

≤ 2∆− 2k + 2− (∆− k + 1)

= ∆− k + 1.

So, by (30),

NR(v2) ∩ V (L) = {xs+1, . . . , xm, ys+t+1, . . . , ym}

and |L| = 2∆− 2k + 2. Now, if

{xs+t+1, . . . , xm, ys+1, . . . , ym} ∩ (NR(v3) ∩ V (L)) 6= ∅,

then since u2u3 ∈ E(Q) by Claim 6, we are done. So, by a similar argument as we did for

v2, we conclude that

NR(v3) ∩ V (L) = {x1, . . . , xs+t, y1, . . . , ys}.

Now, we do this procedure for vi, i ≤ k and soN(vk+1) ⊆ N(v1) if k is even

N(vk+1) ⊆ N(v2) if k is odd.

Now, if s ≥ 1, then with no loss of generality one may assume that there exists an edge

xiyi for some i = 1, . . . , t such that{v1xi, vk+1yi} ⊆ E(Q) if k is even

{v2xi, vk+1yi} ⊆ E(Q) if k is odd.

Moreover, by (22), {u1uk+1, u2uk+1} ⊆ E(Q) and so by Claim 6, G is Class 1. Thus we

can suppose that s = 0 and so

N(vi) ⊆ {x1, . . . , xm} for i = 1, . . . , t.

Now, by pigeonhole principle, (26), (30) and (31), for some i = 1, . . . , t,

dR(xi) ≥
k(∆− k + 1) + (∆− k)2

∆− k + 1
.

Now, by (27), dR(xi) > ∆− 1, a contradiction.

Now, suppose that |L| > 2∆ − 2k + 2. Note that since M is a 1-factor, L has even

order. Thus we can suppose that

|L| ≥ 2∆− 2k + 4. (33)
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By (26), let |F | = ∆ + i, where i = 0, 1, 2. Therefore we find

|R| ≥ 3∆− 2k + 4 + i. (34)

Now, we want to determine an upper bound for |R|. Suppose that |R∆| = r. Let X be

the set of those vertices of L−R∆ such that |NR∆
(x)| = 1. So, for every y ∈ L−(X∪R∆),

|NR∆
(y)| ≥ 2. Note that since G∆ is a disjoint union of cycles, the minimum degree of

the core of every component of H∆ is at least 1. Thus, for every w ∈ V (R∆), since

dR(w) = ∆ − 1, eR(w,R − R∆) ≤ ∆ − 2. Moreover, let NG∆
(x) = {vx, wx} such that

NR∆
(x) = {vx}. Clearly, |X| = |{wx |x ∈ X}| and so eR(wx, R − R∆) ≤ ∆ − 3. Let

|V (R∆) ∩ {v1, . . . , vt}| = d. Now, since V (R∆) ∩ {v1, . . . , vk} = ∅, by (28), (29) we find

that

2(t− d) + |X|+ 2(|R| − (t + |X|+ r − d))

≤ eR(R∆, R−R∆)

≤ |X|(∆− 3) + (r − |X|)(∆− 2).

This implies that

|R| ≤ r∆
2

. (35)

Now, by (34),

3∆− 2k + 4 + i ≤ r∆
2

.

Since r ∈ {3, 4, 5}, this implies that

∆ ≤ 4k − 8− 2i

6− r
. (36)

Now, three cases can be considered:

(i) r = 3. Since G∆ has even order, k ∈ {3, 5}. So, by Claim 3 and since |Q| is odd, ∆

is odd. Now, by (36), ∆ ≤ 4. Thus ∆ = 4, a contradiction.

(ii) r = 4. Since G∆ has even order, k = 4. Moreover, by Claim 3, |Q| = ∆ + 1 and

so i = 1. Thus, by (36) we conclude that ∆ ≤ 3, a contradiction.

(iii) r = 5. Since G∆ has even order and |G∆| ≤ 8, k = 3. Moreover, by Claim 3

and since |Q| is odd, ∆ is odd. Now, by (36), ∆ ≤ 3, a contradiction and the proof is

complete.

15



References

[1] S. Akbari, D. Cariolaro, M. Chavoshi, M. Ghanbari, S. Zare, Some Criteria for a

graph to be Class 1, submitted.

[2] J.A. Bondy and U. S. R. Murty, Graph Theory with Applications, North Holland,

New York, 1976.

[3] D. Cariolaro, G. Cariolaro, Colouring the petals of a graph, Electronic Journal of

Combinatorics, 10 (2003), #R6.

[4] A.G. Chetwynd and A.J.W. Hilton, A ∆-subgraph condition for a graph to be Class

1, J. Combin. Theory Ser. B, 46 (1989), 37-45.

[5] A.G. Chetwynd and A.J.W. Hilton, The chromatic index of graphs with at most

four vertices of maximum degree, Congressus Numerantium, 43 (1984), 221-248.

[6] A.G. Chetwynd and A.J.W. Hilton, Regular graphs of high degree are 1-factorizable,

Proc. London Math. Soc., 50 (1985), 193–6.

[7] A.G. Chetwynd and A.J.W. Hilton, 1-factorizing regular graphs of high degree an

improved bound, Discrete Math., 75 (1989), 103-112.

[8] S.A. Choudum, K.Kayathri, An extension of Vizing’s adjacency lemma on edge

chromatic critical graphs, Discrete Math., 206 (1999), 97-103.

[9] J.K. Dugdale and A.J.W. Hilton, A sufficient condition for a graph to be the core

of a Class 1 graph, Combinat. Prob. Comput., 9 (2000), 97-104.

[10] S. Fiorini and R.J. Wilson, Edge-colourings of graphs, Research Notes in Mathe-

matics, Pitman, 1977.

[11] J.-C. Fournier, Coloration des aretes dun graphe, Cahiers du CERO (Bruxelles), 15

(1973), 311-314.

[12] A.J.W. Hilton, Two conjectures on edge-colouring, Discrete Math., 74 (1989), 61-64.

[13] A.J.W. Hilton and C. Zhao, A sufficient condition for a regular graph to be Class

1, J. Graph Theory, (6) 17 (1993), 701-712.

[14] A.J.W. Hilton and C. Zhao, On the edge-colouring of graphs whose core has maxi-

mum degree two, JCMCC, 21 (1996), 97-108.

16



[15] A.J.W. Hilton and C. Zhao, The chromatic index of a graph whose core has maxi-

mum degree two, Discrete Math., 101 (1992), 135-147.

[16] D.G. Hoffman, Cores of Class II graphs, J. Graph Theory, 20 (1995), 397-402.

[17] I. Holyer, The NP-completeness of edge-colouring, SIAM Journal of Comp. 10

(1981), 718-720.

[18] A. Schrijver, Advanced Graph Theory and Combinatorial Optimization, (2001)

(http://homepages.cwi.nl/ lex/).

[19] Z. Song and H. P. Yap, Chromatic index critical graphs of even order with five major

vertices, Graph and Combinatorics, 21 (2005), 239-246.

[20] Z. Song, Chromatic index critical graphs of odd order with five major vertices, J.

Combin. Math. Combin. Comput. 41 (2002), 161-186.

[21] V.G. Vizing, On an estimate of the chromatic class of a p-graph, (in Russian),

Diskret. Analiz., 3 (1964), 25-30.

[22] V.G. Vizing, Critical graphs with a given chromatic class (in Russian), Diskret.

Analiz. 5 (1965) 6-17.

17


